	RAMAKRISHNA MISSION VIDYAMANDIRA (Residential Autonomous College affiliated to University of Calcutta)						
	FIRST YEAR [2017-20]						
	B.A./B.Sc. FIRST SEMESTER (July – December) 2017 Mid-Semester Examination, September 2017						
Do+	CHFMISTRY (General)						
Time	e : 1	12 noon – 1 pm Paper : I Full Mi	arks : 25				
Λ	Answer and find questions from the following in						
ANS 1	wer	<u>any five</u> questions from the following:	[3×6]				
1.	a) b)	A radio-isotone bromine-82 sample is used as a tracer for organic meterials in any ironwarts	[5] 1				
	U)	studies. Its half-life is 35.3 hours. Calculate the fraction of a sample of bromine-82 that remain after one day.	s [2]				
2.	a)	Show that in the graphical plot of lnk vs 1/T, for the simple reaction following the Arrheniu equation, the slope is equal to the activation energy.	s [3]				
	b)	Given the following rate data, for the reaction : $2NO_2(g) + O_3(g) \rightarrow N_2O_5(g) + O_2(g)$					
		[NO ₂] [O ₃] rate of reaction (M sec ⁻¹)					
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
		1.10 0.80 4.40×10 1.70 1.55 1.32×10^4					
		Determine the order of the reaction.	[2]				
3.	a)	What are the criteria of a thermodynamic reversible process?	[1]				
	b)	For an isothermal expansion of an ideal gas $q = -w$. Justify.	[1]				
	c)	Deduce the expression for maximum work done when 'n' molecules of an ideal gas expand reversibly and isothermally.	1 [3]				
4.	a)	State the Zeroth law of thermodynamics and hence define temperature.	[2]				
	b)	2 mole of an ideal gas is expanded reversibly and isothermally from a volume of 1 litre to 10 litre at 27°C. Calculate q, W, ΔU and ΔH for the process.) [3]				
5.	a)	Heat capacity at constant pressure is greater than heat capacity at constant volume. Why?	[1]				
	b)	Identify intensive and extensive variables from the following list (i) Electrochemical potential (ii) heat capacity, (iii) mole fraction, (iv) surface tension.	, [2]				
	c)	Two moles of an ideal gas at 27°C are enclosed in a leak proof cylinder fitted with movabl frictionless piston and thermally insulated from its surroundings. The pressure on the piston i released very slowly to effect a quasi-static expansion to double its volume. Calculate the final	e s 1				
		temperature. $(\overline{C}_v = 1.5R)$	[2]				
6.	a)	What is meant by standard enthalpy of a reaction?	[1]				
	b)	State and explain Hess's law of constant heat summation.	[1]				
	c)	Given the following heats of reaction at 25°C					
		$C_2H_4(g) + 3O_2(g) = 2CO_2(g) + 2H_2O(l)$ $\Delta_rH^o = -337 \cdot 3$ Kcal					
		$2H_2(g) + O_2(g) = 2H_2O(l)$ $\Delta_r H^o = -136 \cdot 6 \text{ Kcal}$					
		$2C_2H_6(g) + 7O_2(g) = 4CO_2(g) + 6H_2O(l)$ $\Delta_rH^o = -745 \cdot 6 \text{ Kcal}$					
		Calculate $\Delta_r H^\circ$ for the following reaction at 25°C.					
		$C_{2}H_{4}(g) + H_{2}(g) = C_{2}H_{6}(g)$.	[3]				

7.	Wh fror	at is the basis of Pauling electronegativity? Calculate the Pauling electronegativity of chlorine n the following data; bond energies (Kcal/mole) for H_2 (104), $Cl_2(57)$, $HCl(102)$,	
	elec	ctronegativity of 'H' is 2.1.	[2+3]
8.	a)	Arrange the following ions in increasing order of their ionic radii, give reasons.	
		$F^{-}, O^{2-}, Na^{+}, Mg^{2+}, N^{3-}, Al^{3+}.$	[2]
	b)	According to Bohr's model calculate the size of Ne^{9+} .	[2]
	c)	Electron affinities of Noble gases are zero. Explain.	[1]

× -